An epigenetic framework for neurodevelopmental disorders: From pathogenesis to potential therapy
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutri...
Gespeichert in:
Veröffentlicht in: | Neuropharmacology 2013-05, Vol.68, p.2-82 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan–McDermid, Sotos, Kleefstra, Coffin–Lowry and “ATRX” syndromes, and the disorders of imprinting, Angelman and Prader–Willi syndromes. NDDs have been termed “synaptopathies” in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling (“rasopathies”), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant “epigenetic” regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs (“epigenopathies”) lying at the interface of genetic, developmental and environmental processes.
This article is part of the Special Issue entitled ‘Neurodevelopmental Disorders’.
► Neurodevelopmental disorders like autism involve abnormal development of brain. ► Some rare disorders are monogenetic, like Fragile X, but most are polygenetic. ► Certain involve environmental factors, like pre-natal infection or early life trauma. ► Both genetic and environmental factors disrupt epigenetic control of gene expression. ► Processes inc |
---|---|
ISSN: | 0028-3908 1873-7064 |
DOI: | 10.1016/j.neuropharm.2012.11.015 |