multi-scale analysis of breeding site characteristics of the endangered fire salamander (Salamandra infraimmaculata) at its extreme southern range limit

Understanding species’ distributions often requires taking into consideration the characterization of the environment at different spatial scales. The habitat characteristics of the endangered fire salamander, S. infraimmaculata, have received little attention. In this study, at this species’ most p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2014-03, Vol.726 (1), p.229-244
Hauptverfasser: Blank, Lior, Blaustein, Leon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding species’ distributions often requires taking into consideration the characterization of the environment at different spatial scales. The habitat characteristics of the endangered fire salamander, S. infraimmaculata, have received little attention. In this study, at this species’ most peripheral and xeric limit (Mt. Carmel, Israel), we examined predictors of the larval distribution of S. infraimmaculata at aquatic-breeding sites at both local and landscape scales. We investigated the predictive power of environmental variables using two methods: generalized linear models and conditional inference trees (CTREE). Both multi-model approaches yielded similar results. At the local site scale, hydroperiod predicted breeding site use. At the landscape scale, Salamandra presence was best predicted by proximity to other breeding sites. In addition, our study indicates that sites selected for breeding are far from roads and agricultural fields. Overall, this study demonstrates that ultimately, both local and landscape scale predictors are necessary to understand properly a species’ habitat requirements and thus can help in planning future management around the breeding sites.
ISSN:0018-8158
1573-5117
DOI:10.1007/s10750-013-1770-8