The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways

Serotonergic neurotransmission is mediated by at least 14 subtypes of 5-HT receptors. Among these, the CNS serotonin receptor 7 (5-HTR7) is involved in diverse physiological processes. Here we show that treatment of murine striatal and cortical neuronal cultures with 5-HTR7 agonists (8-OH-DPAT and L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropharmacology 2013-04, Vol.67, p.155-167
Hauptverfasser: Speranza, L., Chambery, A., Di Domenico, M., Crispino, M., Severino, V., Volpicelli, F., Leopoldo, M., Bellenchi, G.C., di Porzio, U., Perrone-Capano, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Serotonergic neurotransmission is mediated by at least 14 subtypes of 5-HT receptors. Among these, the CNS serotonin receptor 7 (5-HTR7) is involved in diverse physiological processes. Here we show that treatment of murine striatal and cortical neuronal cultures with 5-HTR7 agonists (8-OH-DPAT and LP-211) significantly enhances neurite outgrowth. This effect is abolished by the selective 5-HTR7 antagonist SB-269970, by the ERK inhibitor U0126, by the cyclin-dependent kinase 5 (Cdk5) inhibitor roscovitine, as well as by cycloheximide, an inhibitor of protein synthesis. These data indicate that 5-HTR7 activation stimulates extensive neurite elongation in CNS primary cultures, subserved by ERK and Cdk5 activation, and de novo protein synthesis. Two-dimensional (2D) gel electrophoresis coupled to Western blot analyses reveals both qualitative and quantitative expression changes in selected cytoskeletal proteins, following treatment of striatal primary cultures with LP-211. In particular, the 34 kDa isoform of MAP1B is selectively expressed in stimulated cultures, consistent with a role of this protein in tubulin polymerization and neurite elongation. In summary, our results show that agonist-dependent activation of the endogenous 5-HTR7 in CNS neuronal primary cultures stimulates ERK- and Cdk5-dependent neurite outgrowth, sustained by modifications of cytoskeletal proteins. These data support the hypothesis that the 5-HTR7 might play a crucial role in shaping neuronal morphology and behaviorally relevant neuronal networks, paving the way to new approaches able to modulate CNS connectivity. ► Stimulation of 5-HTR7 in CNS neuronal primary cultures enhances neurite outgrowth. ► ERK and Cdk5 signaling pathways are required for 5-HTR7-dependent neurite outgrowth. ► 5-HTR7-stimulated neurite outgrowth depends on de novo protein synthesis. ► MAP1B expression is strongly stimulated by activation of 5-HTR7.
ISSN:0028-3908
1873-7064
DOI:10.1016/j.neuropharm.2012.10.026