Stochastic sampled-data control for state estimation of time-varying delayed neural networks

This study examines the state estimation problem for neural networks with a time-varying delay. Unlike other studies, the sampled-data with stochastic sampling is used to design the state estimator using a novel approach that divides the bounding of the activation function into two subintervals. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2013-10, Vol.46, p.99-108
Hauptverfasser: Lee, Tae H., Park, Ju H., Kwon, O.M., Lee, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examines the state estimation problem for neural networks with a time-varying delay. Unlike other studies, the sampled-data with stochastic sampling is used to design the state estimator using a novel approach that divides the bounding of the activation function into two subintervals. To fully use the sawtooth structure characteristics of the sampling input delay, a discontinuous Lyapunov functional is proposed based on the extended Wirtinger inequality. The desired estimator gain can be characterized in terms of the solution to linear matrix inequalities (LMIs). Finally, the proposed method is applied to two numerical examples to show the effectiveness of our result.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2013.05.001