Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions
► A mesophilic and cellulolytic bacterium Caulobacter sp. FMC1 was isolated. ► This strain could degrade cellulose both aerobically and anaerobically. ► Ethanol was the main fermentative product under anaerobic incubation on cellulose. ► The strain had advantages to utilize cellulose in redox-fluctu...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2013-03, Vol.131, p.281-287 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► A mesophilic and cellulolytic bacterium Caulobacter sp. FMC1 was isolated. ► This strain could degrade cellulose both aerobically and anaerobically. ► Ethanol was the main fermentative product under anaerobic incubation on cellulose. ► The strain had advantages to utilize cellulose in redox-fluctuating environments. ► The strain provided clue to optimize cellulose bioconversion process.
Caulobacteria are presumed to be responsible for considerable mineralization of organic material in aquatic environments. In this study, a facultative, mesophilic and cellulolytic bacterium Caulobacter sp. FMC1 was isolated from sediments which were taken from a shallow freshwater lake and then enriched with amendment of submerged macrophyte for three months. This strain seemed to evolve a capacity to adapt redox-fluctuating environments, and could degrade cellulose both aerobically and anaerobically. Cellulose degradation percentages under aerobic and anaerobic conditions were approximately 27% and 10% after a 240-h incubation in liquid mediums containing 0.5% cellulose, respectively. Either cellulose or cellobiose alone was able to induce activities of endoglucanase, exoglucanase, and β-1,4-glucosidase. Interestingly, ethanol was produced as the main fermentative product under anaerobic incubation on cellulose. These results could improve our understanding about cellulose-degrading process in aquatic environments, and were also useful in optimizing cellulose bioconversion process for bioethanol production. |
---|---|
ISSN: | 0960-8524 1873-2976 |
DOI: | 10.1016/j.biortech.2013.01.003 |