Difference equations with the Allee effect and the periodic Sigmoid BevertonaHolt equation revisited
In this paper, we investigate the long-term behaviour of solutions of the periodic Sigmoid BevertonaHolt equation where the a n and I' n are p-periodic positive sequences. Under certain conditions, there are shown to exist an asymptotically stable p-periodic state and a p-periodic Allee state w...
Gespeichert in:
Veröffentlicht in: | Journal of biological dynamics 2012-01, Vol.6 (2), p.1019-1033 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the long-term behaviour of solutions of the periodic Sigmoid BevertonaHolt equation where the a n and I' n are p-periodic positive sequences. Under certain conditions, there are shown to exist an asymptotically stable p-periodic state and a p-periodic Allee state with the property that populations smaller than the Allee state are driven to extinction while populations greater than the Allee state approach the stable state, thus accounting for the long-term behaviour of all initial states. This appears to be the first study of the equation with variable I'. The results are discussed with possible interpretations in Population Dynamics with emphasis on fish populations and smooth cordgrass. |
---|---|
ISSN: | 1751-3758 1751-3766 |
DOI: | 10.1080/17513758.2012.719039 |