Operation of a solid oxide fuel cell on a reformed FAME mixture
The operation of a solid oxide fuel cell (SOFC) using a reformed fatty acid methyl ester (FAME) mixture a biodiesel-like fuel, has been successfully demonstrated. This project had two main aspects: 1) determining the fuel reforming activity of a pyrochlore catalyst deposited onto a monolith; and 2)...
Gespeichert in:
Veröffentlicht in: | Biomass & bioenergy 2012-12, Vol.47, p.362-371 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The operation of a solid oxide fuel cell (SOFC) using a reformed fatty acid methyl ester (FAME) mixture a biodiesel-like fuel, has been successfully demonstrated. This project had two main aspects: 1) determining the fuel reforming activity of a pyrochlore catalyst deposited onto a monolith; and 2) operating a SOFC on reformed fuel gas. Prior to integrated testing, parametric reforming studies of the FAME mixture were conducted using both Rh/γ-Al2O3 and Rh-substituted pyrochlore catalyst powders to determine the operating conditions to maximize syngas selectivity. Using the same pyrochlore catalyst as in the parametric studies, a monolith reformer converted 0.5 cm3 min−1 of the FAME mixture into mostly hydrogen and carbon monoxide (syngas). The syngas generated in the reformer was sent to an anode supported SOFC (H.C. Starck Ceramics GmbH & Co.) The SOFC operated on 98% H2/2% H2O for baseline testing before and after switching to the reformed FAME mixture for 100 h of operation. The results presented here demonstrate that FAME mixture can be successfully reformed to power a SOFC, making them a viable fuel for a SOFC-based auxiliary power unit that is both greenhouse gas neutral and renewable.
► Successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using a reformed biodiesel-like fuel. ► Used a patented Rh-substituted pyrochlore catalyst, which was coated on a monolith, to reform the biodiesel. ► SOFC operated for 100 h on the reformed FAME mixture without significant increase in fuel cell resistance. |
---|---|
ISSN: | 0961-9534 1873-2909 |
DOI: | 10.1016/j.biombioe.2012.09.024 |