Combined Photoacoustic and Acoustic Imaging of Human Breast Specimens in the Mammographic Geometry
Abstract A photoacoustic volume imaging (PAVI) system was designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3-D ultrasound (AUS). The goal of the work described here was to validate the design and evaluate its performance in human brea...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2013-11, Vol.39 (11), p.2176-2184 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract A photoacoustic volume imaging (PAVI) system was designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3-D ultrasound (AUS). The goal of the work described here was to validate the design and evaluate its performance in human breast tissues for non-invasive imaging of deeply positioned structures covering such geometry. The good penetration of near-infrared light and high receiving sensitivity of a broad-bandwidth, 572-element, 2-D polyvinylidene fluoride (PVDF) array at a low center frequency of 1 MHz were used with 20 channel simultaneous acquisition. Pseudo-lesions filled with dilute blood were imaged in three human breast specimens at various depths up to 49 mm. With near-infrared light illumination and 256-sample averaging, the extrapolated maximum depth in imaging a 2.4-mm blood-rich lesion with a 3-dB contrast-to-noise ratio in a compressed breast was 54 mm. Three-dimensional photoacoustic volume image stacks of the breasts were co-registered with 3-D ultrasound image stacks, suggesting for the first time that PAVI, based on the intrinsic tissue contrast, can visualize tissue interfaces other than those with blood, including the inner skin surface and connective tissue sheets. With the designed system, PAVI revealed satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides in the mammographic geometry with mild compression. |
---|---|
ISSN: | 0301-5629 1879-291X |
DOI: | 10.1016/j.ultrasmedbio.2013.05.018 |