A recurrent neural network for solving a class of generalized convex optimization problems

In this paper, we propose a penalty-based recurrent neural network for solving a class of constrained optimization problems with generalized convex objective functions. The model has a simple structure described by using a differential inclusion. It is also applicable for any nonsmooth optimization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2013-08, Vol.44, p.78-86
Hauptverfasser: Hosseini, Alireza, Wang, Jun, Hosseini, S. Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a penalty-based recurrent neural network for solving a class of constrained optimization problems with generalized convex objective functions. The model has a simple structure described by using a differential inclusion. It is also applicable for any nonsmooth optimization problem with affine equality and convex inequality constraints, provided that the objective function is regular and pseudoconvex on feasible region of the problem. It is proven herein that the state vector of the proposed neural network globally converges to and stays thereafter in the feasible region in finite time, and converges to the optimal solution set of the problem.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2013.03.010