IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells

Abstract It has been demonstrated that intestinal commensal bacteria induce immunoglobulin (Ig) A production by promoting the development of gut-associated lymphoid tissues in the small intestine. However, the precise mechanism whereby these bacteria modulate IgA production in the large intestine, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunobiology (1979) 2013-04, Vol.218 (4), p.645-651
Hauptverfasser: Yanagibashi, Tsutomu, Hosono, Akira, Oyama, Akihito, Tsuda, Masato, Suzuki, Ami, Hachimura, Satoshi, Takahashi, Yoshimasa, Momose, Yoshika, Itoh, Kikuji, Hirayama, Kazuhiro, Takahashi, Kyoko, Kaminogawa, Shuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract It has been demonstrated that intestinal commensal bacteria induce immunoglobulin (Ig) A production by promoting the development of gut-associated lymphoid tissues in the small intestine. However, the precise mechanism whereby these bacteria modulate IgA production in the large intestine, which harbors the majority of intestinal commensals, is poorly understood. In addition, it is not known which commensal bacteria induce IgA production in the small intestine and which induce production in the large intestine. To address these issues, we generated gnotobiotic mice mono-associated with different murine commensal bacteria by inoculating germ-free (GF) mice with Lactobacillus johnsonii or Bacteroides acidifaciens . In GF mice, IgA production was barely detectable in the small intestine and was not detected in the large intestine. Interestingly, total IgA secretion in the large intestinal mucosa of B. acidifaciens mono-associated (BA) mice was significantly greater than that of GF and L. johnsonii mono-associated (LJ) mice. However, there was no difference in total IgA production in the small intestine of GF, LJ and BA mice. In addition, in the large intestine of BA mice, the expression of IgA+ cells and germinal center formation were more remarkable than in GF and LJ mice. Furthermore, B. acidifaciens -specific IgA was detected in the large intestine of BA mice. These results suggest that the production of IgA in the large intestine may be modulated by a different mechanism than that in the small intestine, and that B. acidifaciens is one of the predominant bacteria responsible for promoting IgA production in the large intestine.
ISSN:0171-2985
1878-3279
DOI:10.1016/j.imbio.2012.07.033