Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer's disease
Abstract Retinal ganglion cells (RGCs) may be regarded as a target biomarker in Alzheimer's disease (AD). We therefore explored the possibility that RGC degeneration, rather than cell loss, is an early marker of neuronal degeneration in a murine model of AD. RGC dendritic morphology and dendrit...
Gespeichert in:
Veröffentlicht in: | Neurobiology of aging 2013-07, Vol.34 (7), p.1799-1806 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Retinal ganglion cells (RGCs) may be regarded as a target biomarker in Alzheimer's disease (AD). We therefore explored the possibility that RGC degeneration, rather than cell loss, is an early marker of neuronal degeneration in a murine model of AD. RGC dendritic morphology and dendritic spine densities of CA1 hippocampal pyramidal neurons were quantified in 14-month-old transgenic mice expressing the APP(SWE) (amyloid precusor protein-Swedish mutation) mutation (Tg2576). The dendritic integrity of RGCs was found to be significantly reduced in the absence of significant RGC loss in Tg2576 mice compared with age-matched wild-type controls. In hippocampal CA1 pyramidal neurons, we observed dendritic spines to be present at a lower frequency from the same animals, but this did not reach significance. Synaptic and mitochondrial protein expression markers (PSD95 [postsynaptic density protein 95], synaptophysin, and Mfn2 [mitofusin 2]) showed no significant changes in RGC synaptic densities but a highly significant change in mitochondrial morphology with a marked reduction in the integrity of the mitochondrial cristae. Our findings suggest that, in a well-characterized mouse model of AD, RGC dendritic atrophy precedes cell loss, and this change may be because of accumulations of amyloid-β. Because RGC dendrites are confined to the inner plexiform layer of the retina, imaging techniques that focus on this layer, rather than the loss of RGCs, may provide a sensitive biomarker for monitoring neural damage in AD. |
---|---|
ISSN: | 0197-4580 1558-1497 |
DOI: | 10.1016/j.neurobiolaging.2013.01.006 |