Growing self-organizing trees for autonomous hierarchical clustering

This paper presents a new unsupervised learning method based on growing processes and autonomous self-assembly rules. This method, called Growing Self-organizing Trees (GSoT), can grow both network size and tree topology to represent the topological and hierarchical dataset organization, allowing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2013-05, Vol.41, p.85-95
Hauptverfasser: Doan, Nhat-Quang, Azzag, Hanane, Lebbah, Mustapha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new unsupervised learning method based on growing processes and autonomous self-assembly rules. This method, called Growing Self-organizing Trees (GSoT), can grow both network size and tree topology to represent the topological and hierarchical dataset organization, allowing a rapid and interactive visualization. Tree construction rules draw inspiration from elusive properties of biological organization to build hierarchical structures. Experiments conducted on real datasets demonstrate good GSoT performance and provide visual results that are generated during the training process.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2012.08.015