Bioremediation potential of Palmaria palmata and Chondrus crispus (Basin Head): effect of nitrate and ammonium ratio as nitrogen source on nutrient removal

Palmaria palmata and Chondrus crispus were grown for 4 weeks in 1-L flasks at 10 °C to evaluate nutrient uptake and their potential application as nutrient biofilters in effluent from finfish culture. For greatest bioremediation benefit within an integrated system, we conclude that a seaweed biofilt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied phycology 2013-10, Vol.25 (5), p.1349-1358
Hauptverfasser: Corey, Peter, Kim, Jang K, Duston, Jim, Garbary, David J, Prithiviraj, Balakrishnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Palmaria palmata and Chondrus crispus were grown for 4 weeks in 1-L flasks at 10 °C to evaluate nutrient uptake and their potential application as nutrient biofilters in effluent from finfish culture. For greatest bioremediation benefit within an integrated system, we conclude that a seaweed biofilter using these species should be placed prior to bacterial biofiltration for exposure to greater proportions of ammonium than nitrate, though it is apparent that the productivity of both species is not influenced by the nitrogen source. Five combinations of ammonium– and nitrate–nitrogen were compared, each with a total N concentration of 300 μM (300:0, 270:30, 150:150, 30:270, 0:300). Molar nitrogen/phosphorus ratio was 10:1. The maximum growth rates were 8.9 and 6.0 % per day for P. palmata and C. crispus, respectively. For both species, the total nitrogen uptake was highest at 300 μM ammonium, 4.46 mgN gDW⁻¹ day⁻¹ for P. palmata and 3.40 mg N g DW⁻¹ day⁻¹ for C. crispus. Over a 24-h period, 23–37 % of the available nitrate and 91–100 % of the available ammonium were taken up by P. palmata. In the same period, C. crispus took up 55–87 % of available nitrate and 89–100 % of ammonium. Tissue N in P. palmata was highest (4.1 %) at 270 and 300 μM ammonium, while the nitrogen source did not have a significant effect on the tissue N of C. crispus (mean of 4.6 %).
ISSN:0921-8971
1573-5176
DOI:10.1007/s10811-013-9977-7