1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi₂Se₃ as a saturable absorber
Passive Q-switching of an ytterbium-doped fiber (YDF) laser with few-layer topological insulator (TI) is, to the best of our knowledge, experimentally demonstrated for the first time. The few-layer TI: Bi₂Se₃ (2-4 layer thickness) is firstly fabricated by the liquid-phase exfoliation method, and has...
Gespeichert in:
Veröffentlicht in: | Optics express 2013-12, Vol.21 (24), p.29516-29522 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Passive Q-switching of an ytterbium-doped fiber (YDF) laser with few-layer topological insulator (TI) is, to the best of our knowledge, experimentally demonstrated for the first time. The few-layer TI: Bi₂Se₃ (2-4 layer thickness) is firstly fabricated by the liquid-phase exfoliation method, and has a low saturable optical intensity of 53 MW/cm² measured by the Z-scan technique. The optical deposition technique is used to induce the few-layer TI in the solution onto a fiber ferrule for successfully constructing the fiber-integrated TI-based saturable absorber (SA). By inserting this SA into the YDF laser cavity, stable Q-switching operation at 1.06 μm is achieved. The Q-switched pulses have the shortest pulse duration of 1.95 μs, the maximum pulse energy of 17.9 nJ and a tunable pulse-repetition-rate from 8.3 to 29.1 kHz. Our results indicate that the TI as a SA is also available at 1 μm waveband, revealing its potential as another broadband SA (like graphene). |
---|---|
ISSN: | 1094-4087 |
DOI: | 10.1364/OE.21.029516 |