Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations
We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores a...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-02, Vol.140 (5), p.054906-054906 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores and damage to bilayers and also subsequent pore closing and the bilayer recovery after shock wave passed the bilayer. In all our systems where bilayers were damaged, they recovered; nevertheless we observed that a large amount of water crossed the pore that was temporarily created. We also observed that not every lipid molecule remained in the bilayer after recovery, some lipids moved out into water and created micelles. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4862987 |