An Experimental Model of Tool Mark Striations by a Serrated Blade in Human Soft Tissues

ABSTRACTTool mark analysis is a method of matching a weapon with the injury it caused. In a homicidal stabbing using a serrated knife, a stab wound that involves a cartilage may leave striations from the serration points on the blade edge. Assessing tissue striations is a means of identifying the we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of forensic medicine and pathology 2014-03, Vol.35 (1), p.59-61
Hauptverfasser: Jacques, Rebekah, Kogon, Stanley, Shkrum, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACTTool mark analysis is a method of matching a weapon with the injury it caused. In a homicidal stabbing using a serrated knife, a stab wound that involves a cartilage may leave striations from the serration points on the blade edge. Assessing tissue striations is a means of identifying the weapon as having a serrated blade. This prospective study examines the possibility that similar striations may be produced in human soft tissues. Using tissues taken at the time of hospital-consented autopsies, stab wound tracks were assessed in a variety of human tissues (aorta, skin, liver, kidney, and cardiac and skeletal muscle). Stab wounds were produced postmortem with similar serrated and smooth-edged blades. The walls of the stab wounds were exposed, documented by photography and cast with dental impression material. Striations were identified by naked-eye examination in the skin and aorta. Photodocumentation of fresh tissue was best achieved in the aorta. Striations were not identified in wound tracks produced by the smooth-edged blade. Three blinded forensic pathologists were assessed for their ability to detect striations in photographs of wound tracks and had substantial interobserver agreement (κ = 0.76) identifying striations. This study demonstrates that tool mark striations can be present in some noncartilaginous human tissues.
ISSN:0195-7910
1533-404X
DOI:10.1097/PAF.0000000000000078