A wearable and highly sensitive pressure sensor with ultrathin gold nanowires

Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-02, Vol.5 (1), p.3132-3132, Article 3132
Hauptverfasser: Gong, Shu, Schwalb, Willem, Wang, Yongwei, Chen, Yi, Tang, Yue, Si, Jye, Shirinzadeh, Bijan, Cheng, Wenlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (50,000 loading–unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music. Flexible electronics hold great promise for wearable biomedical sensors. Here, the authors report a pressure sensor composed of gold nanowire-impregnated tissue paper, sandwiched between polydimethylsiloxane sheets, and demonstrate that the design is appropriate for large-area flexible electronics.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms4132