Isolation and Identification of a Potent Radical Scavenger (Canolol) from Roasted High Erucic Mustard Seed Oil from Nepal and Its Formation during Roasting
Roasting of high erucic mustard (HEM) seed has been reported to give a typical flavor and increase the oxidative stability of the extracted oil. A potent radical scavenging compound was successfully isolated from roasted HEM seed oil in a single-step chromatographic separation using an amino solid-p...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2012-08, Vol.60 (30), p.7506-7512 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Roasting of high erucic mustard (HEM) seed has been reported to give a typical flavor and increase the oxidative stability of the extracted oil. A potent radical scavenging compound was successfully isolated from roasted HEM seed oil in a single-step chromatographic separation using an amino solid-phase extraction column. Nuclear magnetic resonance and mass spectrometry spectra revealed the compound as 2,6-dimethoxy-4-vinylphenol (generally known as canolol), and its identity was fully confirmed by chemical synthesis. The formation of canolol during roasting was compared among HEM varieties (Brassica juncea, B. juncea var. oriental, Brassica nigra, and Sinapis alba) together with a low erucic rapeseed variety. HEM varieties were shown to produce less than one-third of canolol compared to rapeseed at similar roasting conditions. This observation was linked to a lower free sinapic acid content together with a lower loss of sinapic acid derivatives in the HEM varieties compared to rapeseed. Around 50% of the canolol formed in the roasted seed was shown to be extracted in the oil. Roasting of HEM seed before oil extraction was found to be a beneficial step to obtain canolol-enriched oil, which could improve the oxidative stability. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf301738y |