Effect of dietary fatty acids on metabolic rate and nonshivering thermogenesis in golden hamsters

ABSTRACT Hibernating rodents prior to winter tend to select food rich in polyunsaturated fatty acids (PUFA). Several studies found that such diet may positively affect their winter energy budget by enhancing torpor episodes. However, the effect of composition of dietary fatty acids (FA) on metabolis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental zoology. Part A, Ecological and integrative physiology Ecological and integrative physiology, 2014-02, Vol.321 (2), p.98-107
Hauptverfasser: Jefimow, Małgorzata, Wojciechowski, Michał S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Hibernating rodents prior to winter tend to select food rich in polyunsaturated fatty acids (PUFA). Several studies found that such diet may positively affect their winter energy budget by enhancing torpor episodes. However, the effect of composition of dietary fatty acids (FA) on metabolism of normothermic heterotherms is poorly understood. Thus we tested whether diets different in FA composition affect metabolic rate (MR) and the capacity for nonshivering thermogenesis (NST) in normothermic golden hamsters (Mesocricetus auratus). Animals were housed in outdoor enclosures from May 2010 to April 2011 and fed a diet enriched with PUFA (i.e., standard food supplemented weekly with sunflower and flax seeds) or with saturated and monounsaturated fatty acids (SFA/MUFA, standard food supplemented with mealworms). Since diet rich in PUFA results in lower MR in hibernating animals, we predicted that PUFA‐rich diet would have similar effect on MR of normothermic hamsters, that is, normothermic hamsters on the PUFA diet would have lower metabolic rate in cold and higher NST capacity than hamsters supplemented with SFA/MUFA. Indeed, in winter resting metabolic rate (RMR) below the lower critical temperature was higher and NST capacity was lower in SFA/MUFA‐supplemented animals than in PUFA‐supplemented ones. These results suggest that the increased capacity for NST in PUFA‐supplemented hamsters enables them lower RMR below the lower critical temperature of the thermoneural zone. J. Exp. Zool. 321A: 98–107, 2014. © 2013 Wiley Periodicals, Inc.
ISSN:1932-5223
2471-5638
1932-5231
2471-5646
DOI:10.1002/jez.1840