Crystalline Carbon Nitride Nanosheets for Improved Visible-Light Hydrogen Evolution

Nanosheets of a crystalline 2D carbon nitride were obtained by ionothermal synthesis of the layered bulk material poly(triazine imide), PTI, followed by one-step liquid exfoliation in water. Triazine-based nanosheets are 1-2 nm in height and afford chemically and colloidally stable suspensions under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2014-02, Vol.136 (5), p.1730-1733
Hauptverfasser: Schwinghammer, Katharina, Mesch, Maria B, Duppel, Viola, Ziegler, Christian, Senker, Jürgen, Lotsch, Bettina V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanosheets of a crystalline 2D carbon nitride were obtained by ionothermal synthesis of the layered bulk material poly(triazine imide), PTI, followed by one-step liquid exfoliation in water. Triazine-based nanosheets are 1-2 nm in height and afford chemically and colloidally stable suspensions under both basic and acidic conditions. We use solid-state NMR spectroscopy of isotopically enriched, restacked nanosheets as a tool to indirectly monitor the exfoliation process and carve out the chemical changes occurring upon exfoliation, as well as to determine the nanosheet thickness. PTI nanosheets show significantly enhanced visible-light driven photocatalytic activity toward hydrogen evolution compared to their bulk counterpart, which highlights the crucial role of morpho­logy and surface area on the photocatalytic performance of carbon nitride materials.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja411321s