Arabidopsis Cyclin-Dependent Kinase Gene CDKG;2 is Involved in Organogenic Responses Induced in Vitro

The Arabidopsis CDKG;2 gene encodes a putative cyclin-dependent Ser/Thr protein kinase of unknown biological function. This gene shows structural similarity to animal and human cyclin-dependent (PITSLRE) kinases. This study used the homozygous knockout cdkg;2 mutant based on T-DNA insertional line S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biologica cracoviensia. Series Botanica. 2013-01, Vol.55 (1), p.37-48
Hauptverfasser: Żabicki, Piotr, Kuta, Elżbieta, Tuleja, Monika, Rataj, Katarzyna, Przemysław, Malec
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Arabidopsis CDKG;2 gene encodes a putative cyclin-dependent Ser/Thr protein kinase of unknown biological function. This gene shows structural similarity to animal and human cyclin-dependent (PITSLRE) kinases. This study used the homozygous knockout cdkg;2 mutant based on T-DNA insertional line SALK_090262 to study the effect of mutation of the CDKG;2 gene on explant response and in vitro plant regeneration. For callus induction and proliferation, hypocotyls and cotyledons of 3-day-old seedlings of cdkg;2 and A. thaliana ecotype Col-0 were cultured on solid MS medium supplemented with 2,4-D (2 mg l ). Organogenesis was induced after callus transfer on MS + TDZ (0.5 mg l ). The initiation time of callus and shoot induction differed between the mutant and control cultures. Shoot regeneration after callus transfer on MS + TDZ was delayed in cdkg;2 (31 days versus 7 days in Col- 0). Shoots formed on callus derived from Col-0 hypocotyls but not on cotyledon-derived callus; in cdkg;2, shoots developed on both callus types. Mutant shoots did not form roots, regenerants were dwarfed, and inflorescences had small bud-like flowers with a reduced corolla and generative organs. Abnormalities observed during cdkg;2 organogenesis suggest a role of CDKG;2 as a regulator of adventitious root initiation
ISSN:0001-5296
1898-0295
DOI:10.2478/abcsb-2013-0003