Experimental studies of gypsum plasterboards and composite panels under fire conditions

ABSTRACT Gypsum plasterboards are commonly used to protect the light gauge steel‐framed walls in buildings from fires. Single or multiple plasterboards can be used for this purpose, whereas recent research has proposed a composite panel with a layer of external insulation between two plasterboards....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fire and materials 2014-01, Vol.38 (1), p.13-35
Hauptverfasser: Kolarkar, Prakash, Mahendran, Mahen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Gypsum plasterboards are commonly used to protect the light gauge steel‐framed walls in buildings from fires. Single or multiple plasterboards can be used for this purpose, whereas recent research has proposed a composite panel with a layer of external insulation between two plasterboards. However, a good understanding of the thermal behaviour of these plasterboard panels under fire conditions is not known. Therefore, 15 small‐scale fire tests were conducted on plasterboard panels made of 13 and 16 mm plasterboards and four different types of insulations with varying thickness and density subject to standard fire conditions in AS 1530.4. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effects of interfaces between adjacent plasterboards. Effects of using external insulations such as glass fibre, rockwool and cellulose fibre were also determined. The thermal performance of composite panels developed from different insulating materials of varying densities and thicknesses was examined and compared. This paper presents the details of the fire tests conducted in this study and their valuable time–temperature data for the tested plasterboard panels. These data can be used for the purpose of developing and validating accurate thermal numerical models of these panels. Copyright © 2012 John Wiley & Sons, Ltd.
ISSN:0308-0501
1099-1018
DOI:10.1002/fam.2155