An improved multiple-attractor cellular automata classifier with a tree frame based on CART
From the view of a cell, the partition of a pattern space is a uniform partition. It is difficult to meet the needs of spatial non-uniform partitioning. In this paper, a cellular automaton classifier with a tree structure is proposed, by combining multiple-attractor cellular automata with the algori...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2013-12, Vol.66 (10), p.1836-1844 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | From the view of a cell, the partition of a pattern space is a uniform partition. It is difficult to meet the needs of spatial non-uniform partitioning. In this paper, a cellular automaton classifier with a tree structure is proposed, by combining multiple-attractor cellular automata with the algorithm CART. The method of construction of the characteristic matrix of the multiple-attractor cellular automata is studied on the basis of particle swarm optimization. This method builds multiple-attractor cellular automata as tree nodes. This kind of classifier can be used to solve the non-uniform partition problem and obtain a good classification performance by using a pseudo-exhaustive field with a few bits, and so can restrain the over-fitting. The feasibility and the effectiveness of this method have been verified by experiments. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2013.05.032 |