Modulating protein activity and cellular function by methionine residue oxidation
The sulfur-containing amino acid residue methionine (Met) in a peptide/protein is readily oxidized to methionine sulfoxide [Met(O)] by reactive oxygen species both in vitro and in vivo. Methionine residue oxidation by oxidants is found in an accumulating number of important proteins. Met sulfoxidati...
Gespeichert in:
Veröffentlicht in: | Amino acids 2012-08, Vol.43 (2), p.505-517 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sulfur-containing amino acid residue methionine (Met) in a peptide/protein is readily oxidized to methionine sulfoxide [Met(O)] by reactive oxygen species both in vitro and in vivo. Methionine residue oxidation by oxidants is found in an accumulating number of important proteins. Met sulfoxidation activates calcium/calmodulin-dependent protein kinase II and the large conductance calcium-activated potassium channels, delays inactivation of the
Shaker
potassium channel ShC/B and L-type voltage-dependent calcium channels. Sulfoxidation at critical Met residues inhibits fibrillation of atherosclerosis-related apolipoproteins and multiple neurodegenerative disease-related proteins, such as amyloid beta, α-synuclein, prion, and others. Methionine residue oxidation is also correlated with marked changes in cellular activities. Controlled key methionine residue oxidation may be used as an oxi-genetics tool to dissect specific protein function in situ. |
---|---|
ISSN: | 0939-4451 1438-2199 |
DOI: | 10.1007/s00726-011-1175-9 |