Oxidation of quinolones with peracids (an in situ EPR study)

4‐Oxoquinoline derivatives (quinolones) represent heterocyclic compounds with a variety of biological activities, along with interesting chemical reactivity. The quinolone derivatives possessing secondary amino hydrogen at the nitrogen of the enaminone system are oxidized with 3‐chloroperbenzoic aci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry 2014-01, Vol.52 (1-2), p.22-26
Hauptverfasser: Staško, Andrej, Milata, Viktor, Barbieriková, Zuzana, Brezová, Vlasta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:4‐Oxoquinoline derivatives (quinolones) represent heterocyclic compounds with a variety of biological activities, along with interesting chemical reactivity. The quinolone derivatives possessing secondary amino hydrogen at the nitrogen of the enaminone system are oxidized with 3‐chloroperbenzoic acid to nitroxide radicals in the primary step while maintaining their 4‐pyridone ring. Otherwise, N‐methyl substituted quinolones also form nitroxide radicals coupled with the opening of the 4‐pyridone ring in a gradual oxidation of the methyl group via the nitrone–nitroxide spin‐adduct cycle. This was confirmed in an analogous oxidation using N,N‐dimethylaniline as a model compound. N‐Ethyl quinolones in contrast to its N‐methyl analog form only one nitroxide radical without a further degradation. Copyright © 2013 John Wiley & Sons, Ltd. The quinolone derivatives possessing amino hydrogen at the nitrogen of the enaminone system are oxidized with 3‐chloroperbenzoic acid to nitroxide radicals in the primary step while maintaining their 4‐pyridone ring. Otherwise, N‐methyl substituted quinolones also form nitroxide radicals coupled with the opening of the 4‐pyridone ring in a gradual oxidation of the methyl group via the nitrone–nitroxide spin‐adduct cycle. N‐Ethyl quinolones in contrast to its N‐methyl analog form only one nitroxide radical without a further degradation.
ISSN:0749-1581
1097-458X
DOI:10.1002/mrc.4029