Superconvergence and asymptotic expansion for semidiscrete bilinear finite volume element approximation of the parabolic problem

We first derive the asymptotic expansion of the bilinear finite volume element for the linear parabolic problem by employing the energy-embedded method on uniform grids, and then obtain a high accuracy combination pointwise formula of the derivatives for the finite volume element approximation based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2013-08, Vol.66 (1), p.91-104
Hauptverfasser: Nie, Cunyun, Shu, Shi, Yu, Haiyuan, Yang, Yuyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We first derive the asymptotic expansion of the bilinear finite volume element for the linear parabolic problem by employing the energy-embedded method on uniform grids, and then obtain a high accuracy combination pointwise formula of the derivatives for the finite volume element approximation based on the above asymptotic expansion. Furthermore, we prove that the approximate derivatives have the convergence rate of order two. Numerical experiments confirm the theoretical results.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2013.02.018