Integration of the Classical Action for the Quartic Oscillator in 1 + 1 Dimensions

Anderson derives an explicit form in terms of end-point data in space-time for the classical action, i.e. integration of the Lagrangian along an extremal, for the nonlinear quartic oscillator evaluated on extremals. He begins in a well-known way by adding and subtracting the kinetic energy to the La...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics (Irvine, Calif.) Calif.), 2013-10, Vol.4 (10), p.117-122
1. Verfasser: Anderson, Robert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anderson derives an explicit form in terms of end-point data in space-time for the classical action, i.e. integration of the Lagrangian along an extremal, for the nonlinear quartic oscillator evaluated on extremals. He begins in a well-known way by adding and subtracting the kinetic energy to the Lagrangian.
ISSN:2152-7385
2152-7393
DOI:10.4236/am.2013.410A3014