Integration of the Classical Action for the Quartic Oscillator in 1 + 1 Dimensions
Anderson derives an explicit form in terms of end-point data in space-time for the classical action, i.e. integration of the Lagrangian along an extremal, for the nonlinear quartic oscillator evaluated on extremals. He begins in a well-known way by adding and subtracting the kinetic energy to the La...
Gespeichert in:
Veröffentlicht in: | Applied mathematics (Irvine, Calif.) Calif.), 2013-10, Vol.4 (10), p.117-122 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anderson derives an explicit form in terms of end-point data in space-time for the classical action, i.e. integration of the Lagrangian along an extremal, for the nonlinear quartic oscillator evaluated on extremals. He begins in a well-known way by adding and subtracting the kinetic energy to the Lagrangian. |
---|---|
ISSN: | 2152-7385 2152-7393 |
DOI: | 10.4236/am.2013.410A3014 |