Combining two-parameter and principal component regression estimators
This paper is concerned with the parameter estimation in linear regression model. To overcome the multicollinearity problem, a new class of estimator, namely principal component two-parameter (PCTP) estimator is proposed. The superiority of the new estimator over the principal component regression (...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2012-08, Vol.53 (3), p.549-562 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the parameter estimation in linear regression model. To overcome the multicollinearity problem, a new class of estimator, namely principal component two-parameter (PCTP) estimator is proposed. The superiority of the new estimator over the principal component regression (PCR) estimator, the
r
−
k
class estimator, the
r
−
d
class estimator and the two-parameter estimator proposed by Yang and Chang (Commun Stat Theory Methods 39:923–934
2010
) are discussed with respect to the mean squared error matrix (MSEM) criterion. Furthermore, we give a numerical example and a simulation study to illustrate some of the theoretical results. |
---|---|
ISSN: | 0932-5026 1613-9798 |
DOI: | 10.1007/s00362-011-0364-7 |