A tutorial on variational Bayesian inference
This tutorial describes the mean-field variational Bayesian approximation to inference in graphical models, using modern machine learning terminology rather than statistical physics concepts. It begins by seeking to find an approximate mean-field distribution close to the target joint in the KL-dive...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2012-08, Vol.38 (2), p.85-95 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This tutorial describes the mean-field variational Bayesian approximation to inference in graphical models, using modern machine learning terminology rather than statistical physics concepts. It begins by seeking to find an approximate mean-field distribution close to the target joint in the KL-divergence sense. It then derives local node updates and reviews the recent Variational Message Passing framework. |
---|---|
ISSN: | 0269-2821 1573-7462 |
DOI: | 10.1007/s10462-011-9236-8 |