Planar Crossing Numbers of Graphs of Bounded Genus

Pach and Tóth proved that any n -vertex graph of genus g and maximum degree d has a planar crossing number at most c g dn , for a constant c >1. We improve on this result by decreasing the bound to O ( dgn ), and also prove that our result is tight within a constant factor. Our proof is construct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2012-09, Vol.48 (2), p.393-415
Hauptverfasser: Djidjev, Hristo N., Vrt’o, Imrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pach and Tóth proved that any n -vertex graph of genus g and maximum degree d has a planar crossing number at most c g dn , for a constant c >1. We improve on this result by decreasing the bound to O ( dgn ), and also prove that our result is tight within a constant factor. Our proof is constructive and yields an algorithm with time complexity O ( dgn ). As a consequence of our main result, we show a relation between the planar crossing number and the surface crossing number.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-012-9430-8