Comparative analysis of endogenous plant pararetroviruses in cultivated and wild Dahlia spp

Two distinct caulimoviruses, Dahlia mosaic virus (DMV) and Dahlia common mosaic virus, and an endogenous plant pararetroviral sequence (DvEPRS) were reported in Dahlia spp. DvEPRS, previously referred to as DMV-D10, was originally identified in the US from the cultivated Dahlia variabilis, and has a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virus genes 2014-02, Vol.48 (1), p.140-152
Hauptverfasser: Almeyda, C. V, Eid, S. G, Saar, D, Samuitiene, M, Pappu, H. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two distinct caulimoviruses, Dahlia mosaic virus (DMV) and Dahlia common mosaic virus, and an endogenous plant pararetroviral sequence (DvEPRS) were reported in Dahlia spp. DvEPRS, previously referred to as DMV-D10, was originally identified in the US from the cultivated Dahlia variabilis, and has also been found in New Zealand, Lithuania and Egypt, as well as in wild dahlia species growing in their natural habitats in Mexico. Sequence analysis of three new EPRSs from cultivated dahlias from Lithuania [D10-LT; 7,159 nucleotide level (nt)], New Zealand (D10-NZ, 7,156 nt), and the wild species, Dahlia rupicola, from Mexico (D10-DR, 7,133 nt) is reported in this study. The three EPRSs have the structure and organization typical of a caulimovirus species and showed identities among various open reading frames (ORFs) ranging between 71 and 97 % at the nt when compared to those or the known DvEPRS from the US. Examination of a dataset of seven full-length EPRSs obtained to date from cultivated and wild Dahlia spp. provided clues into genetic diversity of these EPRSs from diverse sources of dahlia. Phylogenetic analyses, mutation frequencies, potential recombination events, selection, and fitness were evaluated as evolutionary evidences for genetic variation. Assessment of all ORFs using phylogenomic and population genetics approaches suggests a wide genetic diversity of EPRSs occurring in dahlias. Phylogenetic analyses show that the EPRSs from various sources form one clade indicating a lack of clustering by geographical origin. Grouping of various EPRSs into two host taxa (cultivated vs. wild) shows little divergence with respect to their origin. Population genetic parameters demonstrate negative selection for all ORFs, with the reverse transcriptase region more variable than other ORFs. Recombination events were found which provide evolutionary evidence for genetic diversity among dahlia-associated EPRSs. This study contributes to an increased understanding of molecular population genetics and evolutionary pathways of these reverse transcribing viral elements.
ISSN:0920-8569
1572-994X
DOI:10.1007/s11262-013-0997-9