Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture

We extend the asymmetric, stochastic, volatility model by modeling the return-volatility distribution nonparametrically. The novelty is modeling this distribution with an infinite mixture of Normals, where the mixture unknowns have a Dirichlet process prior. Cumulative Bayes factors show our semipar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2014-01, Vol.178 (3), p.523-538
Hauptverfasser: Jensen, Mark J., Maheu, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the asymmetric, stochastic, volatility model by modeling the return-volatility distribution nonparametrically. The novelty is modeling this distribution with an infinite mixture of Normals, where the mixture unknowns have a Dirichlet process prior. Cumulative Bayes factors show our semiparametric model accurately forecasting market returns. During tranquil markets, expected volatility rises (declines, then rises as the shock increases) when the market shock is negative (positive). This asymmetry is muted when the market is volatile. In other words, when times are good, no news is good news, but during bad times, neither good nor bad news matters with regards to volatility.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2013.08.018