Theoretical studies of cyclic adenosine monophosphate dependent protein kinase: native enzyme and ground-state and transition-state analogues

The mechanisms of phosphoryl transfer enzymes have garnered considerable attention. Cyclic AMP-dependent protein kinase (cAPK) catalyzes the transfer of the γ phosphoryl group of ATP to the serine hydroxyl group of a peptide chain. Metal-containing fluoro species have been used as transition-state a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2014-02, Vol.43 (8), p.3039-3043
Hauptverfasser: Leigh, Katherine N, Webster, Charles Edwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanisms of phosphoryl transfer enzymes have garnered considerable attention. Cyclic AMP-dependent protein kinase (cAPK) catalyzes the transfer of the γ phosphoryl group of ATP to the serine hydroxyl group of a peptide chain. Metal-containing fluoro species have been used as transition-state and ground-state analogues in a variety of phosphoryl transfer enzymes and have shed light on the nature of the requirements in the active site to catalyze phosphoryl transfer. For cAPK, we present computational studies of the mechanism of phosphoryl transfer and the structure and (19)F NMR spectra of various ground- (BeF3(-)) and transition-state (MgF3(-), AlF4(-), and AlF3(0)) analogues. With native substrate, the phosphoryl transfer proceeds through a five-coordinate phosphorane transition state, i.e., there is not a five-coordinate phosphorane intermediate. Comparisons of simulated and experimental (19)F NMR spectra show cAPK prefers a monoanionic analogue (MgF3(-) or AlF4(-)) over a neutral analogue (AlF3), supporting the charge balance hypothesis.
ISSN:1477-9226
1477-9234
DOI:10.1039/c3dt52358f