From Homoconjugated Push-Pull Chromophores to Donor-Acceptor-Substituted Spiro Systems by Thermal Rearrangement

Series of homoconjugated push–pull chromophores and donor–acceptor (D–A)‐functionalized spiro compounds were synthesized, in which the electron‐donating strength of the anilino donor groups was systematically varied. The structural and optoelectronic properties of the compounds were investigated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2014-01, Vol.20 (5), p.1279-1286
Hauptverfasser: Dengiz, Cagatay, Dumele, Oliver, Kato, Shin-ichiro, Zalibera, Michal, Cias, Pawel, Schweizer, W. Bernd, Boudon, Corinne, Gisselbrecht, Jean-Paul, Gescheidt, Georg, Diederich, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Series of homoconjugated push–pull chromophores and donor–acceptor (D–A)‐functionalized spiro compounds were synthesized, in which the electron‐donating strength of the anilino donor groups was systematically varied. The structural and optoelectronic properties of the compounds were investigated by X‐ray analysis, UV/Vis spectroscopy, electrochemistry, and computational analysis. The homoconjugated push–pull chromophores with a central bicyclo[4.2.0]octane scaffold were obtained in high yield by [2+2] cycloaddition of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) to N,N‐dialkylanilino‐ or N,N‐diarylanilino‐substituted activated alkynes. The spirocyclic compounds were formed by thermal rearrangement of the homoconjugated adducts. They also can be prepared in a one‐pot reaction starting from DDQ and anilino‐substituted alkynes. Spiro products with N,N‐diphenylanilino and N,N‐diisopropylanilino groups were isolated in high yields whereas compounds with pyrrolidino, didodecylamino, and dimethylamino substituents gave poor yields, with formation of insoluble side products. It was shown by in situ trapping experiments with TCNE that cycloreversion is possible during the thermal rearrangement, thereby liberating DDQ. In the low‐yielding transformations, DDQ oxidizes the anilino species present, presumably via an intermediate iminium ion pathway. Such a pathway is not available for the N,N‐diphenylanilino derivative and, in the case of the N,N‐diisopropylanilino derivative, would generate a strained iminium ion (A1,3 strain). The mechanism of the thermal rearrangement was investigated by EPR spectroscopy, which provides good evidence for a proposed biradical pathway starting with the homolytic cleavage of the most strained (CN)CC(CN) bond between the fused four‐ and six‐membered rings in the homoconjugated adducts. From homoconjugation to π‐conjugation: A thermal rearrangement of homoconjugated push–pull chromophores, which are available in high yield by [2+2] cycloaddition of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) to anilino‐activated alkynes, provides π‐conjugated spirocyclic chromophores featuring intense intramolecular charge‐transfer (ICT) bands. The mechanism of this novel rearrangement was investigated, and EPR studies provided good evidence that it proceeds by a biradical mechanism.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201303533