Temperature dependent phonon shifts in single-layer WS(2)
Atomically thin two-dimensional tungsten disulfide (WS2) sheets have attracted much attention due to their potential for future nanoelectronic device applications. We report first experimental investigation on temperature dependent Raman spectra of single-layer WS2 prepared using micromechanical exf...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2014-01, Vol.6 (2), p.1158-1163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atomically thin two-dimensional tungsten disulfide (WS2) sheets have attracted much attention due to their potential for future nanoelectronic device applications. We report first experimental investigation on temperature dependent Raman spectra of single-layer WS2 prepared using micromechanical exfoliation. Our temperature dependent Raman spectroscopy results shows that the E(1)2g and A1g modes of single-layer WS2 soften as temperature increases from 77 to 623 K. The calculated temperature coefficients of the frequencies of 2LA(M), E(1)2g, A1g, and A1g(M) + LA(M) modes of single-layer WS2 were observed to be -0.008, -0.006, -0.006, and -0.01 cm(-1) K(-1), respectively. The results were explained in terms of a double resonance process which is active in atomically thin nanosheet. This process can also be largely applicable in other emerging single-layer materials. |
---|---|
ISSN: | 1944-8252 |
DOI: | 10.1021/am404847d |