HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time
The source and dynamics of persistent HIV-1 during long-term combinational antiretroviral therapy (cART) are critical to understanding the barriers to curing HIV-1 infection. To address this issue, we isolated and genetically characterized HIV-1 DNA from naïve and memory T cells from peripheral bloo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-12, Vol.110 (51), p.E4987-E4996 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The source and dynamics of persistent HIV-1 during long-term combinational antiretroviral therapy (cART) are critical to understanding the barriers to curing HIV-1 infection. To address this issue, we isolated and genetically characterized HIV-1 DNA from naïve and memory T cells from peripheral blood and gut-associated lymphoid tissue (GALT) from eight patients after 4–12 y of suppressive cART. Our detailed analysis of these eight patients indicates that persistent HIV-1 in peripheral blood and GALT is found primarily in memory CD4 ⁺ T cells [CD45RO ⁺/CD27(⁺/⁻)]. The HIV-1 infection frequency of CD4 ⁺ T cells from peripheral blood and GALT was higher in patients who initiated treatment during chronic compared with acute/early infection, indicating that early initiation of therapy results in lower HIV-1 reservoir size in blood and gut. Phylogenetic analysis revealed an HIV-1 genetic change between RNA sequences isolated before initiation of cART and intracellular HIV-1 sequences from the T-cell subsets after 4–12 y of suppressive cART in four of the eight patients. However, evolutionary rate analyses estimated no greater than three nucleotide substitutions per gene region analyzed during all of the 4–12 y of suppressive therapy. We also identified a clearly replication-incompetent viral sequence in multiple memory T cells in one patient, strongly supporting asynchronous cell replication of a cell containing integrated HIV-1 DNA as the source. This study indicates that persistence of a remarkably stable population of infected memory cells will be the primary barrier to a cure, and, with little evidence of viral replication, this population could be maintained by homeostatic cell proliferation or other processes. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1308313110 |