Seasonal variation in the toxicological properties of size-segregated indoor and outdoor air particulate matter
•Outdoor air PM evoked higher inflammatory responses than indoor air PM counterparts.•Indoor air PM had a stronger ability to reduce cell viability than outdoor air PM.•Only outdoor air PM toxicity varied between the warm and cold seasons.•PM10–2.5 samples induced the highest cytotoxic and inflammat...
Gespeichert in:
Veröffentlicht in: | Toxicology in vitro 2013-08, Vol.27 (5), p.1550-1561 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Outdoor air PM evoked higher inflammatory responses than indoor air PM counterparts.•Indoor air PM had a stronger ability to reduce cell viability than outdoor air PM.•Only outdoor air PM toxicity varied between the warm and cold seasons.•PM10–2.5 samples induced the highest cytotoxic and inflammatory responses.
Ambient air particulate matter (PM) as well as microbial contaminants in the indoor air are known to cause severe adverse health effects. It has been shown that there is a clear seasonal variation in the potency of outdoor air particles to evoke inflammation and cytotoxicity. However, the role of outdoor sources in the indoor air quality, especially on its toxicological properties, remains largely unknown. In this study, we collected size segregated (PM10–2.5, PM2.5–0.2 and PM0.2) particulate samples with a high volume cascade impactor (HVCI) on polyurethane foam and fluoropore membrane filters. The samples were collected during four different seasons simultaneously from indoor and outdoor air. Thereafter, the samples were weighed and extracted with methanol from the filters before undergoing toxicological analyses. Mouse macrophages (RAW264.7) were exposed to particulate sample doses of 50, 150 and 300μg/ml for 24h. Thereafter, the levels of the proinflammatory cytokine (TNF-α), NO-production, cytotoxicity (MTT-test) and changes in the cell cycle (SubG1, G1, S and G2/M phases) were investigated. PM10–2.5 particles evoked the highest inflammatory and cytotoxic responses. Instead, PM2.5–0.2 samples exerted the greatest effect on apoptotic activity in the macrophages. With respect to the outdoor air samples, particles collected during warm seasons had a stronger potency to induce inflammatory and cytotoxic responses, whereas no such clear effect was seen with the corresponding indoor air samples. Outdoor air samples were associated with higher inflammatory potential, whereas indoor air samples had overall higher cytotoxic properties. This indicates that the outdoor air has a limited influence on the indoor air quality in a modern house. Thus, the indoor sources dominate the toxicological responses obtained from samples collected inside house. |
---|---|
ISSN: | 0887-2333 1879-3177 |
DOI: | 10.1016/j.tiv.2013.04.001 |