S-nitrosoglutathione-induced toxicity in Drosophila melanogaster: Delayed pupation and induced mild oxidative/nitrosative stress in eclosed flies

The toxicity of the nitric oxide donor S-nitrosoglutathione (GSNO) was tested on the Drosophila melanogaster model system. Fly larvae were raised on food supplemented with GSNO at concentrations of 1.0, 1.5 or 4.0mM. Food supplementation with GSNO caused a developmental delay in the flies. Biochemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2013-01, Vol.164 (1), p.162-170
Hauptverfasser: Lozinsky, Oleksandr V., Lushchak, Oleh V., Kryshchuk, Natalia I., Shchypanska, Natalia Y., Riabkina, Anna H., Skarbek, Stanislava V., Maksymiv, Ivan V., Storey, Janet M., Storey, Kenneth B., Lushchak, Volodymyr I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The toxicity of the nitric oxide donor S-nitrosoglutathione (GSNO) was tested on the Drosophila melanogaster model system. Fly larvae were raised on food supplemented with GSNO at concentrations of 1.0, 1.5 or 4.0mM. Food supplementation with GSNO caused a developmental delay in the flies. Biochemical analyses of oxidative stress markers and activities of antioxidant and associated enzymes were carried out on 2-day-old flies that emerged from control larvae and larvae fed on food supplemented with GSNO. Larval exposure to GSNO resulted in lower activities of aconitase in both sexes and also lower activities of catalase and isocitrate dehydrogenase in adult males relative to the control cohort. Larval treatment with GSNO resulted in higher carbonyl protein content and higher activities of glucose-6-phosphate dehydrogenase in males and higher activities of superoxide dismutase and glutathione-S-transferase in both sexes. Among the parameters tested, aconitase activity and developmental end points may be useful early indicators of toxicity caused by GSNO.
ISSN:1095-6433
1531-4332
DOI:10.1016/j.cbpa.2012.08.006