Self-Aligned Formation of Sub 1 nm Gaps Utilizing Electromigration during Metal Deposition

We developed a procedure for the fabrication of sub 1 nm gap Au electrodes via electromigration. Self-aligned nanogap formation was achieved by applying a bias voltage, which causes electromigration during metal evaporation. We also demonstrated the application of this method for the formation of na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-12, Vol.5 (24), p.12869-12875
Hauptverfasser: Naitoh, Yasuhisa, Ohata, Tatsuhiko, Matsushita, Ryuji, Okawa, Eri, Horikawa, Masayo, Oyama, Makiko, Mukaida, Masakazu, Wang, Dong F, Kiguchi, Manabu, Tsukagoshi, Kazuhito, Ishida, Takao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed a procedure for the fabrication of sub 1 nm gap Au electrodes via electromigration. Self-aligned nanogap formation was achieved by applying a bias voltage, which causes electromigration during metal evaporation. We also demonstrated the application of this method for the formation of nanogaps as small as 1 nm in width, and we found that the gap size can be controlled by changing the magnitude of the applied voltage. On the basis of the electric conductance and surface-enhanced Raman scattering (SERS) measurements, the fabricated gap size was estimated to be nearly equal to the molecular length of 1,4-benzenedithiol (BDT). Compared with existing electromigration methods, the new method provides two advantages: the process currents are clearly suppressed and parallel or large area production is possible. This simple method for the fabrication of a sub 1 nm gap electrode is useful for single-molecule-sized electronics and opens the door to future research on integrated sub 1 nm sized nanogap devices.
ISSN:1944-8244
1944-8252
DOI:10.1021/am403115m