Interaction of Apurinic/Apyrimidinic Endonucleases Nfo and ExoA with the DNA Integrity Scanning Protein DisA in the Processing of Oxidative DNA Damage during Bacillus subtilis Spore Outgrowth
Oxidative stress-induced damage, including 8-oxo-guanine and apurinic/apyrimidinic (AP) DNA lesions, were detected in dormant and outgrowing Bacillus subtilis spores lacking the AP endonucleases Nfo and ExoA. Spores of the Δnfo exoA strain exhibited slightly slowed germination and greatly slowed out...
Gespeichert in:
Veröffentlicht in: | Journal of Bacteriology 2014-02, Vol.196 (3), p.568-578 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oxidative stress-induced damage, including 8-oxo-guanine and apurinic/apyrimidinic (AP) DNA lesions, were detected in dormant and outgrowing Bacillus subtilis spores lacking the AP endonucleases Nfo and ExoA. Spores of the Δnfo exoA strain exhibited slightly slowed germination and greatly slowed outgrowth that drastically slowed the spores' return to vegetative growth. A null mutation in the disA gene, encoding a DNA integrity scanning protein (DisA), suppressed this phenotype, as spores lacking Nfo, ExoA, and DisA exhibited germination and outgrowth kinetics very similar to those of wild-type spores. Overexpression of DisA also restored the slow germination and outgrowth phenotype to nfo exoA disA spores. A disA-lacZ fusion was expressed during sporulation but not in the forespore compartment. However, disA-lacZ was expressed during spore germination/outgrowth, as was a DisA-green fluorescent protein (GFP) fusion protein. Fluorescence microscopy revealed that, as previously shown in sporulating cells, DisA-GFP formed discrete globular foci that colocalized with the nucleoid of germinating and outgrowing spores and remained located primarily in a single cell during early vegetative growth. Finally, the slow-outgrowth phenotype of nfo exoA spores was accompanied by a delay in DNA synthesis to repair AP and 8-oxo-guanine lesions, and these effects were suppressed following disA disruption. We postulate that a DisA-dependent checkpoint arrests DNA replication during B. subtilis spore outgrowth until the germinating spore's genome is free of damage. |
---|---|
ISSN: | 0021-9193 1098-5530 1067-8832 |
DOI: | 10.1128/JB.01259-13 |