Chloroplast energization and oxidation of P700/plastocyanin in illuminated leaves at reduced levels of CO2 or oxygen

Chlorophyll fluorescence, light scattering, the electrochromic shift P515 and levels of some photosynthetic intermediates were measured in illuminated leaves. Oxygen and CO2 concentrations in the gas phase were varied in order to obtain information on control of Photosystem II activity under conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 1992-12, Vol.34 (3), p.433-447
Hauptverfasser: HEBER, U, NEIMANIS, S, SIEBKE, K, SCHÖNKNECHT, G, KATONA, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chlorophyll fluorescence, light scattering, the electrochromic shift P515 and levels of some photosynthetic intermediates were measured in illuminated leaves. Oxygen and CO2 concentrations in the gas phase were varied in order to obtain information on control of Photosystem II activity under conditions such as produced by water stress, when stomatal closure restricts access of CO2 to the photosynthetic apparatus. Light scattering and energy-dependent fluorescence quenching indicated a high level of chloroplast energization under high intensity illumination even when linear electron transport was curtailed in CO2-free air or in 1% oxygen with 35 μll(-1) CO2. Calculations of the phosphorylation potential based on measurements of phosphoglycerate, dihydroxyacetone phosphate and NADP revealed ratios of intrathylakoid to extrathylakoid proton concentrations, which were only somewhat higher in air containing 35 μl l(-1) CO2 than in CO2-free air or 1% oxygen/35 μl l(-1) CO2. Anaerobic conditions prevented appreciable chloroplast energization. Acceptor-limitation of electron flow resulted in a high reduction level of the electron transport chain, which is characterized by decreased oxidation of P700, not only under anaerobic conditions, but also in air, when CO2 was absent, and in 1% oxygen, when the CO2 concentration was reduced to 35 μll(-1). Efficient control of electron transport was indicated by the photoaccumulation of P700 (+) at or close to the CO2 compensation point in air. It is proposed to require the interplay between photorespiratory and photosynthetic electron flows, electron flow to oxygen and cyclic electron flow. The field-indicating electrochromic shift (P515) measured as a rapid absorption decrease on switching the light off followed closely the extent of photoaccumulation of P700 (+) in the light.
ISSN:0166-8595
1573-5079
DOI:10.1007/BF00029817