Analysis of Models and Measurements for Sediment Oxygen Demand in Lake Erie

In situ measurements of water column oxygen consumption and sediment oxygen demand (SOD) in the central basin of Lake Erie are historically 50% to 100% larger than observed from decreases in stocks of dissolved oxygen. Recent statistical and modeling analyses of observed oxygen data, and in situ mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Great Lakes research 1987, Vol.13 (4), p.738-756
1. Verfasser: Snodgrass, William J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In situ measurements of water column oxygen consumption and sediment oxygen demand (SOD) in the central basin of Lake Erie are historically 50% to 100% larger than observed from decreases in stocks of dissolved oxygen. Recent statistical and modeling analyses of observed oxygen data, and in situ measurements of SOD using a dome with gentle mixing, suggest consistent values for SOD of 0.2 to 0.3 g/m 2/d. These values are lower than historical estimates. Three SOD models applicable to Lake Erie are examined. One (Walker) describes SOD as a function of oxygen concentration, and of biological and chemical components. The second (Klapwijk) describes SOD as a function of carbonaceous oxidation, nitrification, denitrification, and ammonia produced by diffusion and in the aerobic, anoxic, and anaerobic zones of the sediments. The third (DiToro) describes SOD as a function of settling fluxes of algae and organics from the water column, and assumes that all anaerobically produced carbon is oxidized in the sediments. It is suggested that aspects of the latter two models are required for future modeling of SOD in Lake Erie. More measurements of sediment profiles of POC are required to resolve certain modeling questions.
ISSN:0380-1330
DOI:10.1016/S0380-1330(87)71688-8