Stimulation of phosphoinositide breakdown in brain synaptoneurosomes by agents that activate sodium influx: antagonism by tetrodotoxin, saxitoxin, and cadmium
Agents that increase intracellular concentrations of Na+ stimulate phosphoinositide breakdown in guinea pig cerebral cortical synaptoneurosomes. When combined, these agents did not have additive effects on phosphoinositide breakdown but did have additive or greater than additive effects with carbamy...
Gespeichert in:
Veröffentlicht in: | Molecular pharmacology 1987-10, Vol.32 (4), p.479-487 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Agents that increase intracellular concentrations of Na+ stimulate phosphoinositide breakdown in guinea pig cerebral cortical
synaptoneurosomes. When combined, these agents did not have additive effects on phosphoinositide breakdown but did have additive
or greater than additive effects with carbamylcholine. Scorpion venom (Leiurus quinquestriatus) and pumiliotoxin B, which
induce small increases in influx of 22Na+ in synaptoneurosomes, stimulate phosphoinositide breakdown by about 6- and 3-fold,
respectively; both effects are inhibited by tetrodotoxin (TTX). Batrachotoxin (BTX) and veratridine, which cause a large increase
in influx of 22Na+ through activation of voltage-dependent sodium channels, induce a 5- to 6-fold dose-dependent increase
in phosphoinositide breakdown, which appears competitively inhibited by 5 microM TTX. BTX- and veratridine-elicited influx
of 22Na+ into synaptoneurosomes is virtually completely blocked by 5 microM TTX. Agents that block voltage-dependent calcium
channels, such as D-600, nifedipine, and Co2+, do not inhibit either influx of 22Na+ or stimulation of phosphoinositide breakdown
elicited by scorpion venom, pumiliotoxin B, or BTX. Cadmium ions (200 microM), which are known to block TTX-resistant sodium
channels, block phosphoinositide breakdown induced by agents that activate sodium influx through sodium channels. Cadmium
blocks BTX-induced phosphoinositide breakdown with an IC50 value of 48 microM, while blocking BTX-induced 22Na+ influx in
synaptoneurosomes with a 13-fold lower potency (IC50, 610 microM). In the presence of 0.5 microM TTX, the IC50 for Cd2+ inhibition
of BTX-induced 22Na+ influx is now 430 microM. Neither TTX nor Cd2+ antagonize neurotransmitter- or monensin-induced phosphoinositide
breakdown. It appears that BTX-induced phosphoinositide breakdown in guinea pig synaptoneurosomes is dependent primarily on
activation of TTX-resistant, Cd2+-sensitive sodium channels that account for only a small fraction of the total sodium influx
induced by BTX in synaptoneurosomes. However, cadmium also may in some way inhibit phosphoinositide breakdown elicited by
sodium channel agents at a point subsequent to sodium influx. |
---|---|
ISSN: | 0026-895X 1521-0111 |