Calculation of eigenfunction fluxes in nuclear systems

A new Monte Carlo method is being developed to calculate eigenfunction fluxes in critical or near-critical nuclear systems. The correct estimation of fluxes is essential for radiation protection and shielding near these systems, in addition to isotope production, isotope depletion, nuclear criticali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation protection dosimetry 2005-01, Vol.115 (1-4), p.69-72
Hauptverfasser: Hendricks, John S., Finch, Joshua P., Choi, Chan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new Monte Carlo method is being developed to calculate eigenfunction fluxes in critical or near-critical nuclear systems. The correct estimation of fluxes is essential for radiation protection and shielding near these systems, in addition to isotope production, isotope depletion, nuclear criticality and other applications. The proposed method applies to Monte Carlo criticality eigenvalue calculations in which the fission sites in one generation are used as fission sources in subsequent generations. The usual Monte Carlo power iteration method for such problems often calculates fluxes (eigenfunctions) that are inaccurate and very different in symmetric parts of a problem geometry. The proposed method calculates flux distributions by estimating an approximate fission matrix. The way the fission matrix is estimated and used differs from other recent works. Preliminary results are promising.
ISSN:0144-8420
1742-3406
DOI:10.1093/rpd/nci190