Novel characteristics of cassava, Manihot esculenta Crantz, a reputed C3-C 4 intermediate photosynthesis species
The cassava plant, Manihot esculenta, grows exceptionally well in low fertility and drought prone environments, but the mechanisms that allow this growth are unknown. Earlier, and sometimes contradictory, work speculated about the presence of a C4-type photosynthesis in cassava leaves. In the presen...
Gespeichert in:
Veröffentlicht in: | Photosynthesis research 1993-10, Vol.38 (1), p.61-72 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cassava plant, Manihot esculenta, grows exceptionally well in low fertility and drought prone environments, but the mechanisms that allow this growth are unknown. Earlier, and sometimes contradictory, work speculated about the presence of a C4-type photosynthesis in cassava leaves. In the present work we found no evidence for a C4 metabolism in mature attached cassava leaves as indicated i) by the low, 2 to 8%, incorporation of (14)CO2 into C4 organic acids in short time periods, 10 s, and the lack of (14)C transfer from C4 acids to other compounds in (12)CO2, ii) by the lack of C4 enzyme activity changes during leaf development and the inability to detect C4 acid decarboxylases, and iii) by leaf CO2 compensation values between 49 and 65 μl of CO2 1(-1) and by other infrared gas exchange photosynthetic measurements. It is concluded that the leaf biochemistry of cassava follows the C3 pathway of photosynthesis with no indication of a C3-C4 mechanism.However, cassava leaves exhibit several novel characteristics. Attached leaves have the ability to effectively partition carbon into sucrose with nearly 45% of the label in sucrose in about one min of (14)CO2 photosynthesis, contrasting with 34% in soybean (C3) and 25% in pigweed (C4). Cassava leaves displayed a strong preference for the synthesis of sucrose versus starch. Field grown cassava leaves exhibited high rates of photosynthesis and curvilinear responses to increasing sunlight irradiances with a tendency to saturate only at high irradiances, above 1500 μmol m(-2) s(-1). Morphologically, the cassava leaf has papillose epidermal cells on its lower mesophyll surface that form 'fence-like' arrangements encircling guard cells. It is proposed that the active synthesis of sugars has osmotic functions in the cassava plant and that the papillose epidermal cells function to maintain a healthy leaf water status in various environments. |
---|---|
ISSN: | 0166-8595 |
DOI: | 10.1007/BF00015062 |