Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: evaluation of blood specimen
The reactive α-oxoaldehydes glyoxal (GO), methylglyoxal (MGO) and 3-deoxyglucosone (3-DG) have been linked to diabetic complications and other age-related diseases. Numerous techniques have been described for the quantification of α-oxoaldehydes in blood or plasma, although with several shortcomings...
Gespeichert in:
Veröffentlicht in: | Clinical chemistry and laboratory medicine 2014-01, Vol.52 (1), p.85-91 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The reactive α-oxoaldehydes glyoxal (GO), methylglyoxal (MGO) and 3-deoxyglucosone (3-DG) have been linked to diabetic complications and other age-related diseases. Numerous techniques have been described for the quantification of α-oxoaldehydes in blood or plasma, although with several shortcomings such as the need of large sample volume, elaborate extraction steps or long run-times during analysis. Therefore, we developed and evaluated an improved method including sample preparation, for the quantification of these α-oxoaldehydes in blood and plasma with ultra performance liquid chromatography tandem mass spectrometry (UPLC MS/MS).
EDTA plasma and whole blood samples were deproteinized using perchloric acid (PCA) and subsequently derivatized with o-phenylenediamine (oPD). GO, MGO and 3-DG concentrations were determined using stable isotope dilution UPLC MS/MS with a run-to-run time of 8 min. Stability of α-oxoaldehyde concentrations in plasma and whole blood during storage was tested. The concentration of GO, MGO and 3-DG was measured in EDTA plasma of non-diabetic controls and patients with type 2 diabetes (T2DM).
Calibration curves of GO, MGO and 3-DG were linear throughout selected ranges. Recoveries of these α-oxoaldehydes were between 95% and 104%. Intra- and inter-assay CVs were between 2% and 14%.
To obtain stable and reliable α-oxoaldehyde concentrations, immediate centrifugation of blood after blood sampling is essential and the use of EDTA as anticoagulant is preferable. Moreover, immediate precipitation of plasma protein with PCA stabilized α-oxoaldehyde concentrations for at least 120 min. With the use of the developed method, we found increased plasma concentrations of GO, MGO and 3-DG in T2DM as compared with non-diabetic controls. |
---|---|
ISSN: | 1434-6621 1437-4331 |
DOI: | 10.1515/cclm-2012-0878 |