GMM estimation of spatial autoregressive models with moving average disturbances

In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and quadrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regional science and urban economics 2013-11, Vol.43 (6), p.903-926
Hauptverfasser: Dogan, Osman, Taspinar, Süleyman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 926
container_issue 6
container_start_page 903
container_title Regional science and urban economics
container_volume 43
creator Dogan, Osman
Taspinar, Süleyman
description In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and quadratic moment functions for GMM estimation. Second, we show that the optimal GMM estimator (GMME) formulated from this set is the most efficient estimator within the class of GMMEs formulated from the set of linear and quadratic moment functions. Our analytical results show that the one-step GMME can be more efficient than the quasi maximum likelihood (QMLE), when the disturbance term is simply i.i.d. With an extensive Monte Carlo study, we compare its finite sample properties against the MLE, the QMLE and the estimators suggested in Fingleton (2008a). •We introduce one-step GMM estimation methods to SARMA models.•We determine the set of the best linear and quadratic moment functions.•The optimal GMME formulated from this set is the most efficient estimator.•The optimal GMME can be more efficient than the quasi MLE (QMLE).
doi_str_mv 10.1016/j.regsciurbeco.2013.09.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1477167296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166046213000689</els_id><sourcerecordid>3153948951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-6f1f7a6983ad6c485e0815277352fd3a10c7897aad7d843ecdb65eb9d08b71713</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEuXxDxFs2CT4kdoxO8SjIIFgAWvLtSfFVRoXOyni7xlUFogVqxmNzlzNHEJOGK0YZfJ8WSVYZBfGNAcXK06ZqKiuKOU7ZMIapUsuaLNLJgjLktaS75ODnJeU4oCLCXmePT4WkIewskOIfRHbIq-xtV1hxyFieoKcwwaKVfTQ5eIjDG_Yb0K_KOwGkl1A4UMe8ALbO8hHZK-1XYbjn3pIXm9vXq7uyoen2f3V5UPp6loPpWxZq6zUjbBeurqZAm3YlCslprz1wjLqVKOVtV75phbg_FxOYa49beaKKSYOydk2d53i-4gfmFXIDrrO9hDHbFitFJOKa4no6R90GcfU43VISVULqjRH6mJLuRRzTtCadUIr6dMwar5lm6X5Ldt8yzZUG5SNy9fbZVQEmwDJIAfow4cEbjA-hv_EfAHPpI9_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467430792</pqid></control><display><type>article</type><title>GMM estimation of spatial autoregressive models with moving average disturbances</title><source>Elsevier ScienceDirect Journals</source><creator>Dogan, Osman ; Taspinar, Süleyman</creator><creatorcontrib>Dogan, Osman ; Taspinar, Süleyman</creatorcontrib><description>In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and quadratic moment functions for GMM estimation. Second, we show that the optimal GMM estimator (GMME) formulated from this set is the most efficient estimator within the class of GMMEs formulated from the set of linear and quadratic moment functions. Our analytical results show that the one-step GMME can be more efficient than the quasi maximum likelihood (QMLE), when the disturbance term is simply i.i.d. With an extensive Monte Carlo study, we compare its finite sample properties against the MLE, the QMLE and the estimators suggested in Fingleton (2008a). •We introduce one-step GMM estimation methods to SARMA models.•We determine the set of the best linear and quadratic moment functions.•The optimal GMME formulated from this set is the most efficient estimator.•The optimal GMME can be more efficient than the quasi MLE (QMLE).</description><identifier>ISSN: 0166-0462</identifier><identifier>EISSN: 1879-2308</identifier><identifier>DOI: 10.1016/j.regsciurbeco.2013.09.002</identifier><identifier>CODEN: RGUEA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotics ; Economic models ; Economic theory ; Estimating techniques ; Estimation ; Generalization ; Generalized method of moments ; GMM ; Mathematical functions ; Maximum likelihood method ; Monte Carlo simulation ; SARMA ; SMA ; Spatial analysis ; Spatial autocorrelation ; Spatial dependence ; Spatial moving average process ; Studies ; Vector-autoregressive models</subject><ispartof>Regional science and urban economics, 2013-11, Vol.43 (6), p.903-926</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-6f1f7a6983ad6c485e0815277352fd3a10c7897aad7d843ecdb65eb9d08b71713</citedby><cites>FETCH-LOGICAL-c449t-6f1f7a6983ad6c485e0815277352fd3a10c7897aad7d843ecdb65eb9d08b71713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166046213000689$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Dogan, Osman</creatorcontrib><creatorcontrib>Taspinar, Süleyman</creatorcontrib><title>GMM estimation of spatial autoregressive models with moving average disturbances</title><title>Regional science and urban economics</title><description>In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and quadratic moment functions for GMM estimation. Second, we show that the optimal GMM estimator (GMME) formulated from this set is the most efficient estimator within the class of GMMEs formulated from the set of linear and quadratic moment functions. Our analytical results show that the one-step GMME can be more efficient than the quasi maximum likelihood (QMLE), when the disturbance term is simply i.i.d. With an extensive Monte Carlo study, we compare its finite sample properties against the MLE, the QMLE and the estimators suggested in Fingleton (2008a). •We introduce one-step GMM estimation methods to SARMA models.•We determine the set of the best linear and quadratic moment functions.•The optimal GMME formulated from this set is the most efficient estimator.•The optimal GMME can be more efficient than the quasi MLE (QMLE).</description><subject>Asymptotics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Generalization</subject><subject>Generalized method of moments</subject><subject>GMM</subject><subject>Mathematical functions</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>SARMA</subject><subject>SMA</subject><subject>Spatial analysis</subject><subject>Spatial autocorrelation</subject><subject>Spatial dependence</subject><subject>Spatial moving average process</subject><subject>Studies</subject><subject>Vector-autoregressive models</subject><issn>0166-0462</issn><issn>1879-2308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEuXxDxFs2CT4kdoxO8SjIIFgAWvLtSfFVRoXOyni7xlUFogVqxmNzlzNHEJOGK0YZfJ8WSVYZBfGNAcXK06ZqKiuKOU7ZMIapUsuaLNLJgjLktaS75ODnJeU4oCLCXmePT4WkIewskOIfRHbIq-xtV1hxyFieoKcwwaKVfTQ5eIjDG_Yb0K_KOwGkl1A4UMe8ALbO8hHZK-1XYbjn3pIXm9vXq7uyoen2f3V5UPp6loPpWxZq6zUjbBeurqZAm3YlCslprz1wjLqVKOVtV75phbg_FxOYa49beaKKSYOydk2d53i-4gfmFXIDrrO9hDHbFitFJOKa4no6R90GcfU43VISVULqjRH6mJLuRRzTtCadUIr6dMwar5lm6X5Ldt8yzZUG5SNy9fbZVQEmwDJIAfow4cEbjA-hv_EfAHPpI9_</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Dogan, Osman</creator><creator>Taspinar, Süleyman</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20131101</creationdate><title>GMM estimation of spatial autoregressive models with moving average disturbances</title><author>Dogan, Osman ; Taspinar, Süleyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-6f1f7a6983ad6c485e0815277352fd3a10c7897aad7d843ecdb65eb9d08b71713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Generalization</topic><topic>Generalized method of moments</topic><topic>GMM</topic><topic>Mathematical functions</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>SARMA</topic><topic>SMA</topic><topic>Spatial analysis</topic><topic>Spatial autocorrelation</topic><topic>Spatial dependence</topic><topic>Spatial moving average process</topic><topic>Studies</topic><topic>Vector-autoregressive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dogan, Osman</creatorcontrib><creatorcontrib>Taspinar, Süleyman</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Regional science and urban economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dogan, Osman</au><au>Taspinar, Süleyman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GMM estimation of spatial autoregressive models with moving average disturbances</atitle><jtitle>Regional science and urban economics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>43</volume><issue>6</issue><spage>903</spage><epage>926</epage><pages>903-926</pages><issn>0166-0462</issn><eissn>1879-2308</eissn><coden>RGUEA3</coden><abstract>In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and quadratic moment functions for GMM estimation. Second, we show that the optimal GMM estimator (GMME) formulated from this set is the most efficient estimator within the class of GMMEs formulated from the set of linear and quadratic moment functions. Our analytical results show that the one-step GMME can be more efficient than the quasi maximum likelihood (QMLE), when the disturbance term is simply i.i.d. With an extensive Monte Carlo study, we compare its finite sample properties against the MLE, the QMLE and the estimators suggested in Fingleton (2008a). •We introduce one-step GMM estimation methods to SARMA models.•We determine the set of the best linear and quadratic moment functions.•The optimal GMME formulated from this set is the most efficient estimator.•The optimal GMME can be more efficient than the quasi MLE (QMLE).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.regsciurbeco.2013.09.002</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-0462
ispartof Regional science and urban economics, 2013-11, Vol.43 (6), p.903-926
issn 0166-0462
1879-2308
language eng
recordid cdi_proquest_miscellaneous_1477167296
source Elsevier ScienceDirect Journals
subjects Asymptotics
Economic models
Economic theory
Estimating techniques
Estimation
Generalization
Generalized method of moments
GMM
Mathematical functions
Maximum likelihood method
Monte Carlo simulation
SARMA
SMA
Spatial analysis
Spatial autocorrelation
Spatial dependence
Spatial moving average process
Studies
Vector-autoregressive models
title GMM estimation of spatial autoregressive models with moving average disturbances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GMM%20estimation%20of%20spatial%20autoregressive%20models%20with%20moving%20average%20disturbances&rft.jtitle=Regional%20science%20and%20urban%20economics&rft.au=Dogan,%20Osman&rft.date=2013-11-01&rft.volume=43&rft.issue=6&rft.spage=903&rft.epage=926&rft.pages=903-926&rft.issn=0166-0462&rft.eissn=1879-2308&rft.coden=RGUEA3&rft_id=info:doi/10.1016/j.regsciurbeco.2013.09.002&rft_dat=%3Cproquest_cross%3E3153948951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467430792&rft_id=info:pmid/&rft_els_id=S0166046213000689&rfr_iscdi=true