GMM estimation of spatial autoregressive models with moving average disturbances

In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and quadrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regional science and urban economics 2013-11, Vol.43 (6), p.903-926
Hauptverfasser: Dogan, Osman, Taspinar, Süleyman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and quadratic moment functions for GMM estimation. Second, we show that the optimal GMM estimator (GMME) formulated from this set is the most efficient estimator within the class of GMMEs formulated from the set of linear and quadratic moment functions. Our analytical results show that the one-step GMME can be more efficient than the quasi maximum likelihood (QMLE), when the disturbance term is simply i.i.d. With an extensive Monte Carlo study, we compare its finite sample properties against the MLE, the QMLE and the estimators suggested in Fingleton (2008a). •We introduce one-step GMM estimation methods to SARMA models.•We determine the set of the best linear and quadratic moment functions.•The optimal GMME formulated from this set is the most efficient estimator.•The optimal GMME can be more efficient than the quasi MLE (QMLE).
ISSN:0166-0462
1879-2308
DOI:10.1016/j.regsciurbeco.2013.09.002