The G Glycoprotein of Human Respiratory Syncytial Viruses of Subgroups A and B: Extensive Sequence Divergence between Antigenically Related Proteins

Two major antigenic subgroups (designated A and B) have been described for human respiratory syncytial virus (RSV). Previously, on the basis of reactivity patterns with monoclonal antibodies, the greatest intersubgroup variation was shown to occur in the G protein, the putative attachment glycoprote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1987-08, Vol.84 (16), p.5625-5629
Hauptverfasser: Johnson, Philip R., Spriggs, Melanie K., Olmsted, Robert A., Collins, Peter L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two major antigenic subgroups (designated A and B) have been described for human respiratory syncytial virus (RSV). Previously, on the basis of reactivity patterns with monoclonal antibodies, the greatest intersubgroup variation was shown to occur in the G protein, the putative attachment glycoprotein. To delineate the molecular basis for this variation, we have determined the nucleotide and deduced amino acid sequences of the G mRNAs and proteins representing a subgroup A (Long strain) and a subgroup B (18537 strain) virus. These sequences were compared to the available G mRNA sequence for another subgroup A (A2 strain) virus. The Long G protein shared 94% amino acid identity with the A2 G protein. In contrast, the 18537 G protein shared only 53% amino acid identity with the A2 sequence; interestingly, most of the sequence divergence occurred in the proposed extracellular domain of the G protein. This extensive divergence for the G protein was significantly greater than that observed for other RSV proteins. Despite this considerable divarication, the proposed extracellular domains of the G proteins contained a single region of highly conserved sequence and secondary structure that may represent a conserved structural or function domain, perhaps involved in attachment to cellular receptors. Furthermore, this conserved region may comprise part of an epitope that is shared between the two subgroup G proteins and may significantly contribute to the fact that, despite extensive overall amino acid sequence divergence, the RSV G proteins maintain significant antigenic relatedness.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.84.16.5625