Two Na,K-ATPase isoenzymes in canine cardiac myocytes. Molecular basis of inotropic and toxic effects of digitalis

Canine cardiac myocytes contain two distinct molecular forms of the Na,K-ATPase catalytic subunit. They are resolved by gel electrophoresis and identified using immunological techniques. The apparent molecular weights of the catalytic subunits are 95,000 (alpha) and 98,000 (alpha +). As judged by [3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1987-05, Vol.262 (14), p.6842-6848
Hauptverfasser: Maixent, J M, Charlemagne, D, de la Chapelle, B, Lelievre, L G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Canine cardiac myocytes contain two distinct molecular forms of the Na,K-ATPase catalytic subunit. They are resolved by gel electrophoresis and identified using immunological techniques. The apparent molecular weights of the catalytic subunits are 95,000 (alpha) and 98,000 (alpha +). As judged by [3H]ouabain-binding measurements and Na,K-ATPase assays, the two forms are active and differ by a factor of 150 in their respective affinity for digitalis (ouabain and digitoxigenin). The dissociation constant of the high affinity form (alpha +) is KD, 2 nM, and that of the low affinity molecular form (alpha) is KD, 300 nM. According to both enzymatic and binding assays, up to 70% of maximum inhibition is caused by occupation of the high affinity sites (alpha +). Inasmuch as the pharmacological and toxic concentrations of digitalis in dog are 1 and 200 nM, respectively, and as maximum inhibition of Na+ pump in vivo should not exceed 80% to avoid toxicity (Akera, T. and Brody, T. (1982) Annu. Rev. Physiol. 44, 375-388), it appears that the high affinity molecular form (alpha +) is the pharmacological receptor exclusively related to positive inotropy, whereas the low affinity form (alpha) is mainly associated with toxicity.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)48321-4